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VALIDATION OF A MONTE CARLO SIMULATION

OF BINARY TIME SERIES

INTRODUCTION

In this report a statistical technique is presented appropriate for the validation of a Monte
Carlo simulation of processes such as detection processes, whose results can be reduced to a finite
sequence of thresholding events having dichotomous, i.e., binary, outcomes. Moreover, the valida-
tion technique can be applied even when the process being simulated cannot be experimentally
repeated. Thus the simulation's validity for the case examined can be determined, to within a
specified level of statistical significance, with only a single observation of the real-world process
being simulated. The statistical technique is nonparametric, it does not assume independence
between events occurring at different times, and it does not require the assumption of any station-
arity or steady state behavior of the process simulated.

The validation technique can be briefly described as follows. Each Monte Carlo replication of
the simulation model produces a vector of m binary elements. Based on this sample of binary vec-
tors, a representation is obtained of the probability distribution of the population of binary vectors
from which the sample was drawn. Using this representation the likelihood of occurrence of any
vector of m binary elements may be computed under the hypothesis that it comes from the same
statistial population as the vectors generated by the simulation model. In particular the likelihood
of the binary vector resulting from an observed run of the actual process under the same conditions
that are represented in the simulation is computed. The question of the validity of the simulation
model, at tb significance level a, is then resolved by observing whether the probability of the
experimentally obtained vector exceeds the ath percentile of the probabilities of the simulation-
generated vectors.

The statistical technique described in this report constitutes a new application, to simulation
model validation, of previous results concerning the representation of the probability distribution
of dichotomous experimental responses. Included in this report is a description of how this tech-
nique was applied to the statistical validation of a particular simulation model used by the U.S. Navy
to represent the surveillance performance of a system of undersea acoustic sensors.

VALIDATION DEFINED

There is considerable diversity of opinion on what constitutes a validation of a simulation, and,
for that matter, on how the term validation is defined. This report follows the currently accepted
terminology, as in Fishman and Kiviat [1] and Steinhorst and Garratt [2J, and defines validation as
"testing the agreement between the behavior of the simulation model and the real system," as
distinguished from verification, which is taken to mean "insuring that a simulation model behaves
as the experimenter intends."

A multitude of different criteria and procedures have been proposed for the validation of
simulation models. Some of these criteria are qualitative, such as the suggestion by Turing 131 that
a model is valid if, given both a model's synthetic output and nonmodeling results in a similar
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JOHNSON, WIENER AND ROQUE

format, an expert cannot discern which is the model result - or the widely used standby of visual
comparison of model output with empirical data.

This report presents the view that a quantitative procedure for simulation model validation is
preferable. A quantitative procedure is a statistical technique whose outcome is the determination
whether the simulation model forecast does or does not agree with nonmodeling results, with a
specified level of statistical assurance. A great variety of such quantitative procedures have been
proposed for the validation of simulations. In the end, the choice of a statistical technique of vali-
dation must be governed by the structure of the model output data and the available real-world
observations of the system being modeled.

STRUCTURE OF THE VALIDATION DATA

The simulation model in question was designed to estimate the performance of an acoustic
sensor in the detection of a target in the ocean. A principal output of the simulation is the set of
instantaneous probabilities of target detection by the sensor at each hour throughout the duration
of the target's specified maneuvers. The simulation requires a substantial collection of numerical
data as input to the computer programs that make up the model. The U.S. Navy maintains a data
base for use in modeling sensor performance, and this data base is periodically reviewed and ap-
proved. The model cannot be operated without input data. Therefore it is appropriate to treat the
data base as fixed and to consider the combination of computer programs and data base as the
simuation model to be validated.

The target's acoustic characteristics and the target track, i.e., the history of the geographical
positions of the target at each hour, are provided as input to the simulation model. The model
operates by replicating this track many times. During a particular replication, at each hour, the
model decides that the sensor either is detecting or is not detecting the target, based on factors such
as sensor-target range and geometry; the acoustic properties of the ocean in the sensor-target vicin-
ity; sensor alertment due to possible detections at previous hours of this replication; and the magni-
tude of a Gauss-Markov fluctuation approximated by summing three independent Ehrenfest random
walk terms (Feller 141 ) at each hour. Thus for a target track lasting m hours, a single replication by
the model produces a vector of m elements, each element being either 1 or 0, where 1 indicates the
sensor is detecting and 0 not detecting the target at a particular hour. The instantaneous probability
of detection at a given hour is then approximated by the mean over all replications of the vector
element corresponding to that hour. The structure of these data is depicted in Fig. 1. The detection
events occur at equally spaced intervals of one hour; however, the word "hour" could be replaced
by the term "time step" wherever it occurs without affecting the accuracy of any statement. More-
over the events whose outcomes are represented by the binary vector elements need not be equally
spaced over time.

The probability of detection of a given target by a given sensor is a strong function of the
target's geographical position. This fact, in conjunction with the alertment effect of prior detections,
makes it clear that a high degree of correlation exists between the detection events occurring at
consecutive hours. Moreover, it would be most unusual for the same probability of detection to
obtain at all points of a target track. Since a moving target is changing its position and aspect rela-
tive to the sensor as time progresses, no steady state will be reached in the finite duration of a target
track.

Another factor affecting the selection of this particular validation technique is the lack of data
concerning realizations of the simulated process. Multiple realizations of the same target track are
practically impossible to obtain for the targets and sensors of interest. As is true of many processes
that are the subjects of simulation, the expense and difficulty involved generally preclude making
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Elapsed Time (hours) 1 2 3 4 5 6 ... 239 240

Observed Detection History 0 0 1 1 1 0 ... 1 1

Model
Replication

1 0 0 1 0 0 0 ... 0 1
2 0 1 0 0 0 0 ... 0 1
3 0 0 1 1 0 0 ... 0 1

50 0 0 1 0 0 0 ... 0 0

Predicted
Detection Probability 0.00 .20 .60 .20 .00 .00 . 00 .60

Fig. 1 - Structure of validation data for an individual acoustic sensor.
240-h track, 50 model replications; 1: detecting the target; and 0: not
detecting the target

repeated controlled experiments. It is impossible to achieve the degree of control necessary to
obtain repeated real-world observations which would have identical inputs to the model. Detection
histories for many different targets are available, but since the target tracks differ geographically,
one cannot treat the detection histories of different targets as members of the same statistical popu-
lation. Hence, observed samples of size one are the major constituent of the available records of the
detection process simulated by the model.

The recorded history of detections of a given target by a given acoustic sensor is not considered
to be a fixed standard to be matched by the simulation. The fluctuations in the physical processes
involved in the origin, transmission, detection, and classification of an acoustic signal require the
recorded history of gains and losses of contact with the target to be regarded as a sample of size
one from a random population of unknown distribution. Hence, one is testing the validity of
the simulation model as a representation of the statistical structure underlying the recorded history
of detections. That is, the hypothesis being tested is that the unknown statistical distribution of
which the observed history of detections constitutes a single sample point is the same as the un-
known statistical distribution of which the model's replications constitute many sample points.

STATISTICAL TECHNIQUE

As a particular target traverses the surveillance zone it generates a track history of detections
for each sensor in the zone. For each sensor i there is an observed vector 1i = (il, • •., kim ) of O's
and l's from a probability distribution p i and the simulation generates n vectors x = (x, .... , xm)
of O's and l's from a probability distribution pi. By use of the n generated vectors, an estimate
Jbi is obtained of pi. The simulated data are applied tobi to obtain the sample distribution as an
approximation to the population distribution. The test consists of determining whether the ob-
served vector ki has Ai-value in the upper I - a region of the sample distribution. If it does, the
hypothesis that ki comes from the distribution pi is accepted. The test is applied for all i and
many acceptances that ki is from pi will confirm that pi is a good approximation to pi, thereby
validating the simulation. It is to be expected that due to statistical fluctuation some sensors will
fail the test. Hence, a distinction must be made between validation of the simulation model in
general and specific statements about the simulation of the individual sensors. Statements about the
latter are simply understood to carry the uncertainty inherent in the statistical test itself.
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JOHNSON, WIENER AND ROQUE

The statistical hypothesis test uses the representation by Bahadur [5] and Lazarsfeld (6]
for the probability distribution underlying binary sequences, which is summarized as follows.
Assume the target track is m hours long. Let X be the set of all points k = (Xl, x 2 ... x m )
with each xi = 0 or 1, and suppose p(k) is a probability distribution on the elements of X, that is,
p(ir) > 0 for all keX and Zjexp(Sc) = 1. Let E (.) denote the expected value of the expression in
parentheses when the distribution p obtains. hen let

vi = Ep(xi) 0 < vi < 1; 1 , 2, .... m; (1)

and

Zi = (Xi - Vi)lvlv i - G - Vi) i 1, 2,... m. (2)

Next define the family

* = p( zi ) i <j;

rijk = EP(z i Zj. Zk) i <j < k; (3)

rl 2 ... m =Ep(Z1  Z2  Zm)

For c (xl, x 2 ... , xm) define
m 1-xe

p[1 1(i ) =~ V,= i ( - V,i) (4)

and

f()=1+ Zi<jrij •z i •zj + 1i<j<krijk  Zi •i Zj (5)

+'' r12...m Z Z 2 """ Z "

Then for each k in X,

P() = P[ 1 (X)f(X) (6)

Thus p1 I () denotes the joint probability distribution of the x.'s under an assumption that the
xi's are independently distributed, and f(k) represents the effects of correlation.

In this representation it is natural to refer to the parameters ri, as second order correlations,
to the parameters r.-k as third order correlations, and so forth, culminating in r1 2 .m' the m-th
order correlation. Te distribution p then is said to have order s if one correlation of order s is non-
zero and all correlations of order greater than s are equal to zero. If a distribution is known to be of
a certain order s, then the representation (5) need only extend to correlations of order s or less.
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The representation (5) and (6) was first given in [61 and was derived by induction on m.
The proof shown here was given in [5] and is due to Bahadur.

PROPOSITION 1. For every x = (x 1, .. ., x,) in X

p(x) -= p[ 1 ] WAX)f)

To establish proposition 1, let V be the vector space of real-valued functions g on X. Consider
V as an inner product space with inner product (hg) and norm I1g~l = (gg)1 /2 , where the inner
product is defined by

(hg)=E (h • g) = h(x) g(x) p[ 1 1 (x).
xEX

It follows from (1) and (2) that the set

S 1; Z 1, Z 2 .... Zm ; ZlZ 2 9 ZIZ 3 ... zm lZm ; ZlZ 2 Z 3 ... ;" . ;Z1Z 2 " z4

of functions on X is orthonormal, i.e., IIgII = 1 for each g in S, and (hg) = 0 for h and g in S with
h * g. Since there are 2n functions in S, since V is 2m dimensional, and since p[ 1] > 0 for each x,
the following proposition holds:

PROPOSITION 2. The set S is a basis in the space of real-valued functions on X. This basis
is orthonormal when p[ (I obtains.

It follows, in particular, that each function f on X admits one and only one representation
as a linear combination of functions in S:

f=E(f,g) *g.
geS

Now take f = p/p 1 .Then

(fg) f**xeX

= g. p (7)
xeX

EP E(g)

for all g. Since Ep(1) =1 and E (zi) =0 for i = 1, .... m by (1) and (2), it follows from the pre-
ceding paragraph and (7) that () holds, with the coefficients defined by (3). This establishes
PROPOSITION 1.

In some applications the nature of the situation being studied or computational problems
might make it necessary to assume a specified order to the distribution, even though the value of
that order cannot be known precisely. If the selection is in error, then the "truncated" form of
expression (5) will be in error and so will the resulting values of f(x) and p(x). As defined by (6),
the estimated p(x) may not be a probability distribution and may assume negative values for

5
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some x. This point is discussed by Bahadur [5]. In addition, to obtain the estimate p of (6) one
must first obtain the estimate f of (5). The statistical fluctuation associated with the values f(X)
is another source of error leading to negative values of fx) for some x and consequently for p (x).
Because 3 may not be a probability distribution, values taken by h are referred to as likelihood
values.

In the present application several considerations led to truncating the form of (5). A fourth-
order approximation to the Bahadur-Lazarsfeld representation has been employed, truncating the
expression in (5) after the fourth-order correlations and using a time window of 12 h, that is, assum-
ing zero correlation between time steps more than 12 h apart. From observations of the detection
process it seems reasonable that the correlation between instants separated by more than 12 h is
negligible compared to the correlations between instants closer together, and the contribution of
correlations of order greater than four is relatively insignificant. The truncation has also been
necessary in order to keep the computer costs within reason.

The need has been established to develop a methodology using experimental evidence to
estimate the proper size of the time window and the order of correlation. A Bayesian statistical
method has been developed by Haskell [71 to be applied to detection data in estimating sensor
performance values for various measures of effectiveness. The technique models the thresholding
events as a stochastic process in continuous time with a well defined autocorrelation function. The
autocorrelation function is characterized by one parameter which the technique estimates. Apply-
ing this method to the real-world observations of specific sensors whose performance is being
simulated could provide a more precise assessment of the correlation order and length of the time
window of the detection process.

APPLICATION TO VALIDATION

The observed realization to be compared with the simulation results consists of a track history
of duration m hours together with the associated detection history. The simulation model is pro-
grammed to run with input parameters characterizing the observed situation. Then n replications
of the model are run, each producing a time series (vector) i g = (X gl, Xg2, - - - Xgm )

,

g = 1, 2, .... n, of m binary elements, where 1 denotes a detection and 0 no detection of the target
by the acoustic sensor. Actual values of m and n used are m = 240 and n = 50. The n binary vectors
are used to estimate the parameters in the Bahadur-Lazarsfeld representation of the probability
distribution corresponding to the population from which the n sample vectors are generated. Simple
unbiased estimators were chosen for all parameters. The estimators for the ui's are maximum likeli-
hood when the distribution p[ I I obtains, that is, when the xgj's are independently distributhd.
Since the vi's are assumed to be neither 0 nor 1, a reasonable correction is made should the data
seem to indicate they are. The estimates are obtained by:

1/2n if = 0

Vi 1 - (1/2n) if xgi = n (8)

(1/n) xi, otherwise for i = 1, 2, . . ,m;

6
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Zg g - ,i)Oi (1-) i =1,2....m,Igi (Igi(9)
g = ,2. .. n;

and

= (1/n) Zgi . Zgj, I < i <j < M;
g =L

(10)

t(l) gZ Zg . z 1z k l<i<j<k<m;

wnk70 (/n g _ z gj Zg •ktl

7' 1 2 ... m 1 n g I ' 29 n

The likelihood pg of the g-th model replication xg is given by

pg =p(C f(Xg) 0 ]i v . (1 - 1)-X ei']  g= 1, 2,_.. n, (1

with f(i ) as characterized by (5) and the z-values as given by (9). Then under the hypothesis that

the random mechanism for the simulation is a model for the random mechanism underlying the

observed sensor's detections, the recorded sequence of detections of that target by the specified

sensor, tne binary vector x = (x 1 , x 2 ... I Xm ), has likelihood q = p(x) - relative to the Bahadur-

Lazarsfeld representation of the n model replications given by (6), using the d's and 7"s

computed by (8) and (10) from the model replications. Once the numbers q = p(i) and

( pg = p(I g) : g = 1, 2,.. ., n) have been obtained, it can be determined whether to accept the

simulation model as valid at a significance level a. The test procedure (a straightforward rank test)

is to reject the hypothesis of association if the observed value q falls below the a-th percentile of

computed values pg. Define N to be the number of elements in the set {p p < q, 1 g < n.

Then if N > nu, the simulation model is determined to be valid in predicting tle performance of

the specified acoustic sensor in detecting that target. The model is rejected as not valid at the a

significance level if N < na. Because the range of likelihood values spans several orders of magni-

tude, plots of the cumulative distribution are generally done in the form "log likelihood vs cumu-

lative probability." The value of N is obtained by first arranging the sequence log (ps), g = 1, . .., n,

in ascending order, comparing each member with log (q), and updating N until the first value is

found that exceeds log (q). Suppose, for example, a = 0.10 is specified. Then for n = 50, the cri-

terion says that for the simulation to be accepted as a reasonable model, the number N (the number

of replications whose likelihood is no greater than q) must be at least 5. The reason a one-sided test

is required here is that the higher the likelihood of the recorded detection history relative to the

Bahadur-Lazarsfeld representation of the model replications, the better the agreement is between

the recorded detection history and the simulation output. Hence one need only be concerned with

rejecting the simulation model if the likelihood of the recorded detection sequence is low relative

to the likelihoods of the model replications.

As mentioned before, the approximation to (5) can be negative for some vectors i,in which

case the hypothesis test cannot always be decided. Fortunately such occurrences turned out to ne

very rare. An alternate statistical technique was developed to deal with the very few instances in

7
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which it happened. An additional alternative to deal with this problem would have been to add
correlation terms of higher order until the Bahadur-Lazarsfeld representation yielded a positive
likelihood (if at all). This, however, is not guaranteed to work since all parameters are estimated.
It was deemed too expensive to try for the very little reward to be obtained in incorporating just
a few more cases. The simulation validation results are derived from the overwhelming majority
of the cases in which the technique presented here was applied successfully.

Figures 2 and 3 illustrate an application of the Bahadur-Lazarsfeld representation. The sample
log likelihood vs cumulative probability distribution curve is drawn using the likelihoods assigned by
the Bahadur-Lazarsfeld representation to the model replications. The critical region is determined
from the likelihood at which the cumulative probability curve reaches the tenth percentile (a = 0.1).
With n = 50 replications, if the replications are numbered in order of increasing likelihood the
boundary of the critical region is the likelihood of the fifth replication. In Fig. 2 the log likelihood,
-62.7, of the reported sequence of detections of that target by that acoustic sensor exceeds the log
likelihood, -67.9, determining the critical region, so the simulation predictions are accepted as a
good fit to the recorded observations. In Fig. 3 the likelihood of the reported sequence is less than
the likelihood that bounds the critical region, so the simulation model in that case is rejected as not
valid.

Users of the simulation model commonly run 50 replications of a target track; but before
conducting a validation it was necessary to determine whether 50 model replications constitute a
large enough sample with which to perform the validation hypothesis tests. Figure 4 shows the dis-
tribution of likelihoods (relative to their respective Bahadur representations) of three independent
sets of 50 replications for the same target and acoustic sensor. This case seemed to exhibit more
variability than usual between replications, yet the Smirnov two-sided test for goodness-of-fit
fat the 0.20 significance level) indicated that the three samples could be assumed to have come from
the same population. Thus, it was concluded that 50 replications of the model are sufficient for
validation purposes. On the other hand, Fig. 5 is a similar illustration of the empirical distributions
of three independent sets of 20 replications each for the same target and detecting sensor. Although
these samples pass the Smirnov two-sided goodness-of-fit test at 0.10 significance level, at the 0.20
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significance level the test indicates the three samples did not come from the same population. Thus,
it was concluded that the variability between samples of only 20 replications was too great to permit
their use in a validation.

VALIDATION RESULTS

The technique just described was applied to determine the validity of the simulation model in
representing the detection performance of several different acoustic sensors. To be acceptable as
valid, a model such as this should be able to represent any of a wide range of situations when given
the characterizing parameters. Thus the true validation test lies in determining how well the model
performs over a number of cases.

The tracks of nine different targets, whose detection histories were available, were simulated
by the model, and 50 Monte Carlo replications of each target track were produced. The detection
performance against these nine targets by the set of acoustic sensors that were operating was pre-
dicted by the model. The validation test was applied to the 50 detection performance vectors
produced by the simulation for each sensor, along with the record of actual detections by each
sensor. The results of these validation tests are summarized in Table 1. In this table a "+" symbol
indicates those cases in which no detections of a particular target by a particular sensor were re-
corded. In all such cases the simulation model predicted a low enough level of detections to be
accepted as valid. The symbol "*" denotes those cases where the model forecast was a good fit
to the recorded history of detections and where there were detections of that target by that sensor
recorded. The symbol "0" denotes those cases in which the simulation model output was found to
be an inadequate fit to the observed record of detections. Table 1 shows that in the great majority
of sensor-target combinations the predictions by the simulation model are a good fit to the recorded
observations, at the 0.10 significance level. But one can identify certain sensors, particularly C, D,
M, and R, whose performance is estimated inadequately by the model. The representation of these
sensors within the data base of the simulation model has been singled out for investigation and
possible improvement.

10
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Table 1 - Validation Results

Target 1 2 3 4 5 6 7 8 9

A 0 + + + + + 0 +

B + + + + + + + 0 +
C + + 0 * + 0 + 0 +
D + + 0 + 0 0
E + + + + 0 + * * +
F + * + + + + + + +
G * + + + + + + + +
H * + + + + + + +

* 0 + + + + + + 0
J 0 + + a + + + +
K * 0 + + + + + + +
L a 0 + 0 + * * +
M 0 0 + a a 0 "
N 0 + + + + + + +
0 + + + + + + + a +
P a 0 + + a + 0 0 0
a + + + a + + + +
R + + + 0 + 0 + 0 +

S + + + a + a + 0 +

System 0 * a 0 0

* :Predictions accepted at 0.10 significance level. Detections recorded.

0:Predictions rejected at 0.10 significance level.
+:Predictions accepted at 0.10 level, but no detections recorded by this sensor.

These results suggest the following hypothesis about the model. It is to be recalled that the
model was described as comprising both a computer routine and a set of numbers that characterize
the situations, the sensors, and the targets. In a large family of cases the hypothesis of a good fit
between model results and observed results was accepted; this would tend to indicate both a reason-
ably good family of mathematical routines and good supporting numbers in the model. On the
other hand, in other cases the combination of the same mathematical routines with other supporting
values produced results for which the hypothesis of a good fit was rejected. Consequently it seems
worthwhile to postulate, as a hypothesis for further investigation, that the mathematical founda-
tions of the simulation model are reasonable (or "valid"), but that the values characterizing some of
the sensors are in error.

It is also worth noting that certain targets, such as number 2 and number 8, show a relatively
high rate of rejection of the goodness of fit hypothesis. It is possible that the values used in the model
to characterize these targets were in error. However, eliminating these targets from the data base
will not make the results from all the sensors acceptable.

In addition to examining the individual sensor performance in the model, the validation
methodology can be used to validate the results for families of sensors. Note that for validation
purposes the detection performance of an entire set of sensors can be treated in exactly the same
way as those for an individual sensor simply by defining a "system detection" whenever at least
one of the set of sensors is detecting the target. By use of this scheme validation results were
obtained for the simulation model's predictions of system detection performance; these appear in
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the bottom row of Table 1. The number of invalid estimates of system detection performance
again suggests that the simulation model with the present data base should not be considered
completely valid. When the input data representing certain sensors in the model have been cor-
rected or refined, the model should be reexamined for validity.

PROPERTIES OF THE TEST

The properties of the statistical test applied to validate the simulation remain open for
further investigation. Of immediate interest is whether specifying the a-th percentile of the sample
distribution does result in a probability of rejection equal to a. In addition there are such concerns
as to how one should deal with alternative hypotheses and what kind of power does the test ex-
hibit in evaluating alternatives. Only partial answers have been obtained to some of these questions.

Under the assumption that the simulation model is valid, the statistical test for a specific
sensor-track combination constitutes a Bernoulli trial with rejection probability a and probability
of no rejection 1 - a. Here the sample distribution (of the n replications) is used as an approxima-
tion to the theoretical distribution; hence the actual rejection probability may appear to be data-
driven. However the repetitions are identically distributed. Repetitions of the test itself under
identical conditions should generate a proportion of rejections approximating the probability of
rejection as the number of repetitions increase. In general there are n + 1 vectors each of length m.
Ideally the probability of rejection should equal a when the n + Ist vector (sample vector) is from
the same distribution as the first n and it should equal the power of the test when the n + 1 st
sample is not from the same distribution. To make inferences about the probability of rejection,
successive repetitions of the same test may be generated. The repetitions should be grouped into
subsets of equal size from which a proportion of rejections may be computed for each one. The
computed proportions are a sequence of iid. random variables. Taking a large enough number of
subsets one can then appeal to the Central Limit Theorem and use classical statistical techniques
to make inferences on the probability of rejection that results when applying the given test at a
specific level a.

A preliminary evaluation of the properties of the test has been conducted with the use of the
computer. Sets of n + 1 random binary vectors were repeatedly generated from a known distribu-
tion of correlation order 1 and the test procedure was applied with a specified level o to determine
whether the n + 1 st vector did or did not belong to the population from which the first n vectors
came. The evaluation was conducted for various values of m and various values of n for each m.
For the cases considered, the results appear to indicate that the probability of rejection is actually
less than a for m = 2 or 3, but it approaches a from below as m increases and is practically a for
m = 5 and 6. This conclusion however cannot be accepted as general because the analysis was
limited to a few known distributions of very simple structure. In a similar fashion the n + 1 st
vector was then generated from a known distribution of order 1 other than the distribution from
which the first n vectors were generated. The same procedure was applied, where the proportion
of rejections now estimates the power of the test against a known alternative. Again, the analysis
was limited but the test technique appears to discriminate very well.

An interesting problem revealed in the evaluation is that vectors with negative likelihoods
arise as a function of the fluctuation of f(x) around its theoretical value. In the cases considered
the theoretical value is f(x) = 1. As n increases the distribution of the n values f(x) tends towards
a spike at 1 and the number of vectors resulting in negative likelihoods decreases or disappears.
In the future more formal attention should be paid to this problem since it is relevant in assessing
the adequacy of the Bahadur-Lazarsfeld representation for practical application purposes.

12
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Of a more general nature is one particular data structure that shows that the probability of
rejection approaches a as m, the number of columns increase. The analysis consists of letting
n = 2n where all binary vector columns consist of independent, identically distributed Bernoulli
random variables with the probability of a I given by u. There are (2m )2m possible outcomes
from which the Bahadur-Lazarsfeld representations may be obtained. To each of these outcomes
one may associate 21n possible n + Ist or observed vectors yielding a total of (2

m )2m + ' elementary
outcomes to be considered. First it is assumed that the observed vectors come from the same
distribution as the sets of first n vectors. Specifying a, evaluating N (as defined in application to
validation) for each outcome and applying the rules of the test one may establish an association
between u and the actual probability of rejection. Table 2 lists all possible outcomes when per-
forming the test for the case m = 1. In this case the probability of rejection is independent of a.
For any ae (0,11 the probability of rejection is given by Pr(V) = v(1 - v) depending only on v.
The function Pr(V) has domain 10,1, is concave, and is symmetric around the point v = 1/2 where
it achieves its maximum of 1/4. If it is now assumed that the observed vector comes from a different
distribution, say a Bernoulli random variable with the probability of a 1 given by t, then the power
of the test is also independent of a and given by 1 - g = V2 (1 - t) + (1 - v)2 t. The power of the
test depends only on the relative values of v and t. For larger values of m the number of elementary
outcomes to consider increases very rapidly, yet one can try to discern a pattern from the cases
m = 1, 2 and 3. This is best illustrated by considering what happens when m = 2. The values of N
are either 0, 1, 2 or 4. This means that for values of a in the intervals I, = (0, 1/41, 12 = (1/4, 1/21
and 13 = (1/2, 1] there correspond three different probability of rejection functions Pr1 (V),Pr2(V),
and p, 3 (v), depending only on v. These functions have range [0, h, 1, (0, h2 ] and (0, h3] respec-
tively where h1 e I,, h2 E 12, and h 3 e 13. The functions Pr2(V) and Pr3(V) corresponding to the
larger values of a are concave and symmetric around v = 1/2 where they achieve their maxima h2
and h3 . As a gets smaller, in this case ctel 1, the function Pri (v) begins to behave in a different
manner. It remains symmetric around v = 1/2 but in this instance it becomes bimodal. It jumps
to a quicker maximum achieved at about v = 0.3 (also v = 0.7) and remains fairly close to its
maximum for values of v between v = 0.3 and v = 0.7. For values of m > 1 the number of non-
overlapping subintervals covering (0, 1] where a may be specified is given by 2"n - 1. The right-
most subinterval always has length 1/2m -1. All others have length 1/2 m . The length of the sub-
intervals decreases rapidly and to each one corresponds a unique probability of rejection function
pr(v) with range [0, h] where h is contained in the subinterval where a assumes its value. The
functions pr(u) depend only on v and are symmetric around v = 1/2. One can only speculate as to
the general pattern followed by the functions Pr(V) as m increases. As m increases h -+ a and it
appears that for smaller a's the functio pr(v) tend to achieve their maximum rapidly and remain
close to this maximum for values of v between the modes perhaps approximating a rectangular
shape. This behavior supports that observed from the computer evaluation. If this is the case, as
m gets large and a gets small the probability of rejection approaches a. The functions p,(v) for the
case m 2 are plotted in Fig. 6.

Table 2 - Test Outcomes for Case m -1

X p1 (x) q N

g=1 g=2 g0 =l
g=f2 xo= O  xo ffi  xo 0 xo =

l

1 1 3/4 3/4 1/4 3/4 0 2
1 0 1/2 1/2 1/2 1/2 2 2
0 1 1/2 1/2 1/2 1/2 2 2
0 0 1/4 3/4 3/4 1/4 2 0
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Fig. 6 - Functions pr(v) for the case m = 2

The analysis is by no means complete. So far only special cases with relatively simple struc-
tures have yielded some information on the nature of the statistical test. It is, however, a chal-
lenging problem that remains open for further consideration.

SUMMARY

In summary, a method has been developed for the statistical testing of a Monte Carlo simu-
lation whose output can be reduced to time series of binary data. This method has been imple-
mented on a high-speed digital computer and has been successfully applied to determine that a
particular simulation model, in combination with its approved data base, should not be considered
valid. The validation technique presented here is applicable to simulations in a wide range of sub-
jects, especially sonar systems, radar systems, other detection processes, and other processes
which involve threshold crossing criteria to establish binary ("yes" or "no") outputs.
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